Sagemont School SUMMER REVIEW PACKET

For students in entering $\boldsymbol{P} \underline{\boldsymbol{R E}} \boldsymbol{C} \boldsymbol{C A L C U L U S}$ (All Levels)

Name: \qquad

1. This packet is to be handed in to your Pre-Calculus teacher on the first day of the school year.
2. All work must be shown in the packet OR on separate paper attached to the packet. 3 . Completion of this packet is worth one-half of a major test grade and will be counted in your first marking period grade.

Radicals:

To simplify means that 1) no radicand has a perfect square factor and
2) there is no radical in the denominator (rationalize).

Recall - the Product Property $a b=a!b^{\text {and the Quotient Property }}{ }_{b}{ }^{a}$
${ }^{a}=$
b
Examples: Simplify $24=4$! 6find a perfect square factor

$$
=2 \text { 6simplify }
$$

Simplify 2^{2}
${ }^{7}=!$ split apart, then multiply by both the numerator and the 7
2 2

14

$$
==\text { multiply straight across and simplify }
$$

If the denominator contains 2 terms multiply the numerator and the denominator by the conjugate of the denominator The conjugate of $3+2$ is $3!2$ (the sign changes between the terms).

Simplify each of the following.

$$
\text { 1. } 322 .^{8}(2 x) 3 . .^{3}!644 .{ }^{28} 49 m n
$$

5. ${ }^{11} 96.60 \cdot 105^{7}(5!6)(5+2)$

Rationalize.

8. ${ }_{2} 19.3^{2} 10 .{ }^{3}$

Complex Numbers:

Form of complex number $-a+b i$
Whereais the "real" is part and biis the "imaginary" part
Always make these substitutions $!1=i$ and $i^{2}=!1$

- To simplify: pull out the!1before performing any operation

Example: $\forall 5=\forall 1!5$ Pull out!1Example:(5) $55^{2} i=i!$ List twice $=i 5$ Make substitution25
$=i$ Simplify
$=(!1)(5)=!5$ Substitute

- Treatilike any other variable when,+- , !, or|(but always simplify $1^{2} i=$!)

Example: $2 i(3+i)=2(3 i)+2 i(i)$ Distribute

$$
={ }^{2} 6 i+2 i \text { Simplify }
$$

$=6 i+2(!1)$ Make substitution
$=!2+6 i$ Simplify and rewrite in complex form

- Since $i=!1$, no answer can have an ' i ' in the denominator RATIONALIZE!!

Simplify.

$9 .!4910.6!1211 .!6(2!8 i)+3(5+7 i)$
12. () ${ }^{2}$

3! $4 i$ 13. $(6!4 i)(6+4 i)$

Rationalize.

14. ${ }^{16}$

$$
\begin{array}{ll}
+5 & i \\
i &
\end{array}
$$

Geometry:
Pythagorean Theorem (right triangles): ${ }^{222}$

$$
a+b=c
$$

Find the value of x.

15. 16. 17.

x x
$9 \times \times 58$

12512
18. A square has perimeter 12 cm . Find the length of the diagonal.

* In $30^{\circ}!60^{\circ}!90^{\circ}$ triangles, ${ }^{*}$ In $45^{\circ}!45^{\circ}!90^{\circ}$ triangles, sides are in proportion 1 , 3,2 . sides are in proportion 1,1,2 .
$60^{\circ} 45^{\circ}$
122

Solve for x and y.
19. 20.

$$
\begin{aligned}
& 45^{\circ} 45^{\circ} \\
& \text { x y } 4
\end{aligned}
$$

X
$45^{\circ} 45^{\circ}$
2 y

4
21. 22.
$60^{\circ} 460^{\circ} y$
x 3

$$
30^{\circ} 30^{\circ}
$$

yx

Equations of Lines:

Slope intercept form: $y=m x+b$ Vertical line: $\mathrm{x}=\mathrm{c}$ (slope is undefined) Point-slope form: $y!y_{1}=$ $m\left(x!x_{1}\right)$ Horizontal line: $\mathrm{y}=\mathrm{c}($ slope is 0$)$

Standard Form: $A x+B y=C$ Slope: $m=y_{2}!y_{1}$

$$
x_{2}!x_{1}
$$

23. State the slope and y-intercept of the linear equation: $5 x-4 y=8$.
24. Find the x-intercept and y-intercept of the equation: $2 x-y=5$
25. Write the equation in standard form: $y=7 x-5$

Write the equation of the line in slope-intercept form with the following conditions: 26 . slope $=-5$ and passes through the point $(-3,-8)$
27. passes through the points $(4,3)$ and $(7,-2)$
28. x-intercept $=3$ and y-intercept $=2$

Graphing:

Graph each function, inequality, and / or system.
$29.3 x!4 y=1230 .{ }^{2}{ }_{2}$

${ }^{6}$
4
2
.55
2
4
${ }^{6}$
$31 . y<!4 x!232 . y+2=x+1$ 。

Abstract

33. $y>x!134 .^{2} y+4=(x!1)$

Vertex:
x-intercept(s): \qquad
y -intercept(s):

Systems of Equations:

36

224
$x y=$

Substitution: Elimination:

Solve 1 equation for 1 variable. Find opposite coefficients for 1 variable. Rearrange.
Multiply equation(s) by constant(s). Plug into $2^{\text {nd }}$ equation. Add equations together (lose 1 variable). Solve for the other variable. Solve for variable.

Then plug answer back into an original equation to solve for the $2^{\text {nd }}$ variable.
$y=6!3 x$ solve $1^{\text {st }}$ equation for $\mathrm{y} 6 x+2 y=12$ multiply $1^{\text {st }}$ equation by $22 x!2(6!3 x)=4$ plug
into $2^{\text {nd }}$ equation $2 x!2 y=4$ coefficients of y are opposite
$2 x!12+6 x=4$ distribute $8 x=16$ add
$8 x=16$ simplify $x=2$ simplify
$x=2$

$$
\begin{aligned}
& \text { 3(2) } 6 \\
& += \\
& y \\
& 66 \\
& += \\
& y
\end{aligned}
$$

Plug $x=2$ back into original

$$
{ }^{y}=
$$

Solve each system of equations. Use any method.

```
35.24
! + =
    xy
\forall
    #+=
    321
    xy
```

$$
\text { 36. } \begin{aligned}
& 24 \\
& !+= \\
& x y \\
& \forall \#= \\
& 314 \\
& x y
\end{aligned}
$$

37.2513
$\forall!=$
$w z$ \#

ヨ +
6310
$w z$

Exponents:

TWO RULES OF ONE

1. $a=a$

Any number raised to the power of one equals itself.
$2.1=1{ }^{a}$
One to any power is one.

ZERO RULE

$3.1^{0} a=$
Any nonzero number raised to the power of zero is one.

PRODUCT RULE

$$
\begin{gathered}
\text { 4. }{ }^{m n m n} \text { a } a a^{+} \\
!=
\end{gathered}
$$

When multiplying two powers that have the same base, add the exponents.

OUOTIENT RULE

```
    m
    a!
5.mn
            =
                a
        n
    a
```

When dividing two powers with the same base, subtract the exponents.

POWER RULE

6. ${ }^{m n m} a a^{\prime}()=$

When a power is raised to another power, multiply the exponents.

NEGATIVE EXPONENTS

```
    al
```

 1
 'and \({ }^{n}\)
 7. n
$=$
$a^{=}$
$!_{1}^{a}$
a
Any nonzero number raised to a negative power equals its reciprocal raised to the opposite positive power.

Express each of the following in simplest form. Answers should not have any negative exponents.
$3 c \quad$ () $n p$
$38 .{ }^{0} 5 a 39.1$
$2 e f$
$!\quad$ Simplify.
$42 .{ }^{2} 3 m \cdot 2 m 43 .{ }^{32}(a) 44 .{ }^{345}(!b c) 45 .{ }^{2} 4 m(3 a m)$

Polynomials:

To add / subtract polynomials, combine like terms.

$$
\begin{aligned}
& 8 x!3 y+6!(6 y+4 x!9) \text { Distribute the } \\
& \text { negative through the parantheses. }=8 x!3 y+6 \\
& !6 y!4 x+9 \text { Combine terms with similar } \\
& \text { variables. }=8 x!4 x!3 y!6 y+6+9 \\
& =4 x!9 y+15
\end{aligned}
$$

Simplify.

$46.3 x^{3}+9+7 x^{2}!x^{3} 47.7 m!6!(2 m+5)$ To multiplying two binomials, use FOIL.

EX:

Multiply.

$(3 x!2)(x+4)$ Multiply the first, outer, inner,like terms.
then last terms. $=3 x^{2}+12 x!2 x!8$ Combine $=3 x^{2}+10 x!8$
48. $(3 a+1)(a-2)$ 49. $(s+3)(s-3) 50 .(c-5)^{2} 51 .(5 x+7 y)(5 x-7 y)$

Factoring.

Follow these steps in order to factor polynomials.
STEP 1: Look for a GCF in ALL of the terms.
a.) If you have one (other than 1) factor it out front.
b.) If you don't have one, move on to STEP 2.

STEP 2: How many terms does the polynomial have?

2 Terms

a.) Is it difference of two squares? $a^{2}!b^{2}=(a+b)(a!b)$

$$
\mathbf{E X}: x^{2}!25=(x+5)(x!5)
$$

b.) Is it sum or difference of two cubes? ${ }^{a^{3}!} b^{3}=(a!b)\left(a^{2}+a b+b^{2}\right) a^{3}+$ $b^{3}=(a+b)\left(a^{2}!a b+b^{2}\right)$
EX: $m^{3}+64=(m+4)\left(m^{2}!4 m+16\right)$

$$
p^{3}!125=(p!5)\left(p^{2}+5 p+25\right)
$$

3 Terms

$$
\begin{aligned}
& x^{2}+b x+c=(x+)(x+) \mathbf{E x}: x^{2}+7 x+12=(x+3)(x+4) \\
& x^{2}!b x+c=(x!)(x!) x^{2}!5 x+4=(x!1)(x!4) \\
& x^{2}+b x!c=(x!)(x+) x^{2}+6 x!16=(x!2)(x+8) x^{2}!b x!c=(x!)(x
\end{aligned}
$$

$$
\text { +) } x^{2}!2 x!24=(x!6)(x+4)
$$

4 Terms -- Factor by Grouping
a.) Pair up first two terms and last two terms
b.) Factor out GCF of each pair of numbers.
c.) Factor out front the parentheses that the terms have in common.
d.) Put leftover terms in parentheses.

$$
\left.\begin{array}{rl}
\mathrm{Ex}: x^{3}+3 x^{2}+9 x+27= & \left(x^{3}+3 x^{2}(9 x+27)\right. \\
& =x^{2}(x+3)^{+9}(x+3) \\
& =\left({ }^{+9}\right) \\
\end{array}\right) x^{2} \quad l
$$

Factor completely.

52. $z^{2}+4 z!1253.6!5 x!x^{2} 54.2 k^{2}+2 k!60$

To solve quadratic equations, try to factor first and set each factor equal to zero. Solve for your variable. If the quadratic does NOT factor, use quadratic formula.

$$
\begin{array}{ll}
\text { EX: } & (x+3)(x!7)=0 \text { Set each } \\
x^{2}!4 x=21 \text { Set equal to zero } & \text { factor equal to zero. } x+3= \\
\text { FIRST. } x^{2}!4 x!21=0 \text { Now } & =!3 x=7
\end{array}
$$

factor.

Solve each equation.

$60 . x^{2}!4 x!12=061 \cdot x^{2}+25=10 x 62 \cdot x^{2}!14 x+40=0$

DISCRIMINANT: The number under the radical in the quadratic formula ($b^{2}!4 a c$) can tell you what kinds of roots you will have.
IF $b^{2}!4 a c>0$ you will have TWO real roots. IF $b^{2}!4 a c=0$ you will have ONE real root (touches x -axis twice) (touches the x -axis once)

IF $b^{2}!4 a c<0$ you will have TWO imaginary roots.
(Graph does not cross the x -axis)

QUADRATIC FORMULA - allows you to solve any quadratic for all its real and imaginary
roots. $x=!b \pm b^{2}!4 a c$
$2 a$
EX: In the equation: $x^{2}+2 x+3=0$, find the value of the discriminant, describe the nature of the roots, then solve.
$x^{2}+2 x+3=0$ Determine values for a, b, and c .
$a=1 b=2 c=3$ Find dicriminant.
$\mathrm{D}=2^{2}!4 \forall 1 \forall 3$
$D=4!12$
$D=!8$ There are two imaginary roots.
Solve : $x=!2 \pm!8$
2

$$
x=!2 \pm 2 i 2
$$

$$
2
$$

$$
x=!1 \pm i 2
$$

Find the value of the discriminant, describe the nature of the roots, then solve each
quadratic. Use EXACT values.
63. $x^{2}!9 x+14=064.5 x^{2}!2 x+4=0$

Discriminant $=$ \qquad Discriminant $=$ \qquad Type of

Roots: \qquad Type of Roots: \qquad Roots =
\qquad Roots $=$ \qquad

12
Long Division - can be used when dividing any polynomials. Synthetic Division - can ONLY be used when dividing a polynomial by a linear (degree one) polynomial.

EX: $2 x^{3}+3 x^{2}!6 x+10$

$$
x+3
$$

Long Division Synthetic Division $2 x^{3}+3 x^{2}!6 x+10$

$$
x+3
$$

$$
x+3
$$

$$
2 x^{3}+3 x^{2}!6 x+10 x+3
$$

$2 x^{2}!3 x+3+1$

$$
=x+32 x^{3}+3 x^{2}!6 x+10(!)\left(2 x^{3}\right.
$$

$$
\left.+6 x^{2}\right)
$$

$!3 x^{2}!6 x$
! $323!610 \forall!69!92!331$
(!) (!3x $\left.x^{2}!9 x\right)$
$=2 x!3 x+3+1$
$x+3$

Divide each polynomial using long division OR synthetic division.

$$
\begin{aligned}
& 65 c^{3}!3 c^{2}+18 c!16 \\
& \qquad c^{2}+3 c!2 \quad x^{4}!2 x^{2}!x+2 \\
& x+2
\end{aligned}
$$

To evaluate a function for a given value, simply plug the value into the function for \mathbf{x}.

Evaluate each function for the given value.
67. $f(x)=x^{2}!6 x+268 . g(x)=6 x!769 \cdot f(x)=3 x^{2}!4 f(3)=$ \qquad $g(x+h)={ }^{5!} f(x+2)$
$\forall_{\exists}^{\#}=$ \qquad

Composition and Inverses of Functions:

Recall: $\left({ }^{f!g}\right)(x)=f(g(x))$ OR $f[g(x)]$ read " f of \boldsymbol{g} of \boldsymbol{x} " Means to plug the inside function (in this case $\mathrm{g}(\mathrm{x}) \mathrm{)}$ in for x in the outside function (in this case, $\mathrm{f}(\mathrm{x})$).

Example: Given $f(x)=2 x^{2}+1$ and $g(x)=x$! 4find $f(g(x))$.

$$
\begin{aligned}
f(g(x)) & =f(x!4) \\
& =2(x!4)^{2}+1 \\
& =2\left(x^{2}!8 x+16\right)+1
\end{aligned}
$$

$$
\begin{aligned}
& =2 x^{2}!16 x+32+1 \\
f(g(x)) & =2 x^{2}!16 x+33
\end{aligned}
$$

Suppose $f(x)=2 x, g(x)=3 x!2$, and $h(x)=x^{2}!4$. Find the following:
70. $f!^{g(2)} \forall \# \exists=$ \qquad 71. $f!^{g(x)} \forall^{\#} \exists=$ \qquad 72. $f!^{h(3)} \forall^{\#} \exists$ $=\quad$ 73. $g!^{f(x)} \forall^{\#} \exists=$ \qquad

To find the inverse of a function, simply switch the x and the y and solve for the new " y " value.
Example:

$$
\begin{aligned}
& f(x)=x+1^{3} \text { Rewrite } \mathrm{f}(\mathrm{x}) \text { as } \mathrm{y} \\
& \mathrm{y}=x+1^{3} \text { Switch } \mathrm{x} \text { and } \mathrm{y} \\
& \mathrm{x}=y+1^{3} \text { Solve for your new } \mathrm{y} \\
& (x)^{3}=y+1^{3}()^{3} \text { Cube both sides } \\
& x^{3}=y+1 \text { Simplify } \\
& y=x^{3}!1 \text { Solve for } \mathrm{y} \\
& f^{!1}(x)=x^{3}!1 \text { Rewrite in inverse notation }
\end{aligned}
$$

Find the inverse, $f^{-1}(x)$, if possible.
74. $f(x)=5 x+275 \cdot f(x)=2 x!^{1} 3$

Rational Algebraic Expressions:

Multiplying and Dividing.
Factor numerator and denominator completely. Cancel any common factors in the top and bottom. If dividing, change divide to multiply and flip the second fraction.

EX:

$$
\begin{aligned}
& x^{2}+10 x+21 \\
& 5!4 x!x^{2} \cdot x^{2}+2 x!15
\end{aligned}
$$

$$
\begin{aligned}
& \qquad x^{3}+4 x^{2}!21 x \text { Factor everything completely. } \\
& = \\
& =(x+7)(x+3) \\
& \\
& (5+x)(1!x) \cdot(x+5)(x!3) \\
& \\
& x(x!3)(x+7) \text { Cancel out common factors in the top and bottom. } \\
& = \\
& \\
& \\
& x(1+3)
\end{aligned}
$$

Simplify.

$$
\begin{gathered}
77 . \\
3 z \cdot m^{2}!25 \\
m^{3}+z^{2}!z 79 \cdot a^{2}!5 a+6
\end{gathered}
$$

$$
\begin{aligned}
& 5 d+\left.1\right|^{6!13 d+6 d^{2}} \\
& 78 . \\
& m^{2}+5 m \quad 10 r^{5} \\
& 21 s^{2} \cdot 3 s \\
& 5 r^{3} \\
& 80 . \\
& a!2 \quad 6 d!9 \\
& a+4 \cdot 3 a+12 \\
& 15 d^{2}!7 d!2
\end{aligned}
$$

Addition and Subtraction.
First, find the least common denominator.
Write each fraction with the LCD.
Add / subtract numerators as indicated and leave the denominators as they are.

$$
x^{2}+2 x+5 x!4
$$

EX:

$$
3 x+1
$$

$2 x+4$ Factor denominator

$$
=3 x+1
$$

completely.

$$
\begin{aligned}
& x(x+2)+5 x!4 \\
& \quad 2(x+2) \text { Find LCD }(2 x)(x+2)
\end{aligned}
$$

$$
=2(3 x+1)
$$

$$
2 x(x+2)+x(5 x!4)
$$

$2 x(x+2)$ Rewrite each fraction with the $L C D$ as the denominator.

$$
=6 x+2+5 x^{2}!4 x
$$

$$
2 x(x+2) \text { Write as one fraction. }
$$

$$
=5 x^{2}+2 x+2
$$

$2 x(x+2)$ Combine like terms.

$$
a b^{2} 83.2!a^{2}
$$

81. ${ }^{2 x-} \quad 5!382 . b!a$

$$
a^{2}{ }_{b+} a+b
$$

$$
a^{2}+a+3 a+43 a+3
$$

Complex Fractions.

Eliminate complex fractions by multiplying the numerator and denominator by the LCD of each of the small fractions. Then simplify as you did above

2
84.
$1!^{1} 2$
$=a^{2}+a$
$2!a^{2}$ Factor and
simplify if possible.
$=a(a+1)$
$2!a^{2}$
86.
$2+{ }^{1} 88$.

$z+1$

Solving Rational Equations:

Multiply each term by the LCD of all the fractions. This should eliminate all of your fractions. Then solve the equation as usual.

$$
\begin{gathered}
\underset{5}{x+2+}{ }_{5}^{1}{ }_{x=}^{5} x_{x} \text { Find LCD first. } x(x+2) \\
x(x+2)^{5}{ }^{5}{ }^{\exists} \% \&+x(x+2)^{1} x \\
!{ }^{\square}{ }^{\exists} \% \&={ }^{5} x
\end{gathered}
$$

$$
\begin{aligned}
& ! \\
& x+2 \\
& !
\end{aligned}
$$

$\forall \#^{\exists} \% \& x(x+2)$ Multiply each term by the LCD.

$$
\begin{aligned}
& 1 \\
& 8 \\
& 5
\end{aligned}
$$

$$
\begin{array}{ll}
\text { EX: } & { }^{1}=5 \\
5 x+1(x+2)=5(x+2) \text { Simplify } & 10+8=8 \\
\text { and solve. } 5 x+x+2=5 x+10 & 5 \\
6 x+2=5 x+10 & \\
x=8 \ni \text { Check your answer. } & 5 \\
\text { Sometimes they do not check! } & 8=8
\end{array}
$$

Check:

Solve each equation. Check your solutions.

88. ${ }^{12} \underset{x+4}{3}={ }^{3} 289 \cdot x+10$

$$
\begin{aligned}
& x^{2}!2=x^{4} 90.5 \\
& x!5=x \\
& x!5!1
\end{aligned}
$$

